

CAESAR: Middleware for Complex Service-Oriented Peer-to-Peer Applications

Lipo Chan, Shanika Karunasekera, Aaron Harwood and Egemen Tanin

P2P Group/NICTA Victoria Research Laboratory Department of Computer Science and Software Engineering The University of Melbourne Victoria 3010, Australia

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

Background and Motivation

Background

- P2P Massively Multi-Player Online game (MMOG)
- Middleware for MMOGs currently being commercialized
- Experiences and Motivation
 - Tight coupling to P2P protocols leads to tedious development activity, especially for complex applications.
 - Limited to sharing data storage, hence minimal ability to delegate processing amongst peers; not fully utilizing the computing power of P2P paradigm.
 - Complex development leads to low consideration for software quality attributes, e.g. reliability, security, interoperability and performance.

Outline

- Design principles of CAESAR (*Complex Application DEvelopment using Service-Oriented Architecture*) middleware.
- Overview of CAESAR.
- Implementation of CAESAR.
- Complex application development with CAESAR.
- Current and future agenda.

Design Principles (1)

- P2P protocols use a variety of data structures and complex algorithms to provide efficient lookup within large-scale peer-based network.
- Addition of non-functional requirements increases protocol complexity.
- Desirable to reduce direct exposure to these complexities in order to *simplify application development*.
- Abstraction through interfaces to resolve issue of tight coupling, hence leads to interoperability and extensibility.

Design Principles (2)

- Complex applications can be computationally intensive, thus requiring more sharing of storage, but logic as well.
- Sharing logic through services, where peers offering (or requiring) the same types of services are able to form communities and delegate processing amongst communal peers.
- Service-oriented paradigm enables flexible functional composition to be formed amongst peers, thus harnessing collective computing power.

Design Principles (3)

- Abstraction of P2P protocols enables open services to be developed, i.e. integration with multiple P2P protocols.
- Flexible mix-and-match *enhances peer functionality*.
- Well-defined interfaces support dynamic binding between services and P2P protocols.

Design Principles (4)

- Dynamic nature of P2P paradigm requires handling of issues such as data consistency and integrity.
- Replication and migration mechanisms are essential, but non-trivial, which lead to cumbersome development technicality.
- Supporting *robust development of P2P applications* through an embedded network management approach that hides complicated network processes.

Middleware Overview (1)

- Component-based architecture.
- 3 levels of abstractions: application, service, protocol.
- Application Director used by application developers to access functions provided by CAESAR.
- Equivalently, Service Façade for service developers and Protocol Façade for protocol developers.
- Service/Protocol Plugin supports addition of services and protocols.

Middleware Overview (2)

- Network and Object Management works with Service Façade and Protocol Façade to support dynamic binding between services and protocols.
- Also manages peer service communities, or as we term service overlays.
- Service overlays are being managed via a common data structure (*ServiceObject*) that contains processing data and states.
- Also provides essential network processes, e.g. replication and migration.

Middleware Overview (3)

- Internet Simulation and Emulation to facilitates largescale testing that reflect realworld P2P networks.
- Emulation consumes significantly less resources.
- Details of APIs are available in the paper.

Collaboration between core components

Middleware Implementation

- Initial implementation was in C++ on a UNIX platform.
- A number of existing P2P protocols have been implemented as protocol plugins to CAESER.
- Several services that use these protocols have been implemented as service plugins.
- More recently, with the commercialization efforts of the MMOG a .NET version of the software was developed, mainly focused towards the MMOG (customized version).

Complex Application Development

Linger 2	New OPen Project	d or
6- 14	Create OPeN Project Create a new DPAI project with the defined properties	
	Paget Spec	
	Che const voltages Chere soldges Content port Content port Content port	
St. Outline 13 In outline is not available	Type - Select protect type	
	OfMUC - Application OfMUC - Application OfMUC - Service	0 3 * 0 t
	(Balt, Tree) Corol	
	CBak, men Tom Cover	

Applications:

- Event Finder
- Platform for Message Passing
 Interface (MPI) programs
- Collaborative Intrusion Detection Service
- Massively Multiplayer Online Games
- Integrated Development Environment to support the use of CAESAR – plugin to Eclipse.

Current & Future Agenda

- We are enhancing the middleware to support more management functionalities (migration, replication).
- A java version of the CAESER middleware architecture is currently being developed (SEDA is being evaluated as an event driven architecture to implement the middleware).

Questions?

Further information: <u>http://p2p.csse.unimelb.edu.au</u>