
MW4SOC: part of Middleware ‘07
“Ontology based algorithm modeling: 

obtaining adaptation for SOA environment”
Simone Grassi, Trinity College Dublin

Computer Science Department 
Distributed Systems Group

(other authors: 
Stephen Barrett, Francesco Sordillo)



Objectives

Software development life cycle slow and expensive

In SOA we need to model specific sections of the systems

Adaptable Web Services: client driven adaptations

Distribute adaptation to heterogeneous systems



State of the art
Automatic service adaptation techniques act on the composition 
(ex: BPEL)

Software synthesis techniques model big section of the systems 
(ex: UML and MDA)

Standard and work in progress provides additional technology 
but don’t approach the problem

We didn’t find an effort in creating adaptable web services



Ontology to model algorithms

We can add as much semantic information as needed

It enable the use of reasoning on Algorithms to evaluate : 
complexity, compare algorithms, adapt using aspects

Enable to abstract/concretize algorithms

Extend the Ontology to obtaining a Domain Specific Language 
approach



Case Study: tax scheme

Accountancy 

Application 

Server

CSP level 1 

(Government) 

BP Engine

BP/WS

Registry

...

Web 

Portal

Web Portal

with Tax 

Services

Accountancy 

Application

SP

(Region 1) 

BP Engine

BP/WP

Registry
SP

(Region n) 

BP Engine

BP/WP

Registry



An algorithm

The individuals of an 
OWL ontology creates a 
syntax-tree of an algorithm

-

1

<

yp y

0py

if

<

nla i

&

TaxAmountLayersWithAgeReduction

(idP,a,P,S,E,y,yp,py,nla)

=>

*

for i=1,size(P)

+= v1

v1 Pi

=

v1 0

Ei

if

>

a

-

Ei Si

if

<

a Si

0 -

a Si



Merging algorithms
TaxAmountLayersWithAgeReduction

(idP,a,P,S,E,ch,pc,nlc,yp,y,nla,py)

-

1

>

ch 0

0pc

if

<

nlc i

&

=>

*

for i=1,size(P)

+= v1

v1 Pi

=

v1 0

Ei

if

>

a

-

Ei Si

if

<

a Si

0 -

a Si

-

1

<

yp y

0py

if

<

nla i

&



abstracted algorithm: AO style

Adaptation

TaxAmountLayers()

foreach

a

S[nlc]

&

<

a

substitute

a *

a pc

read

access

With a more abstract 
specification we can describe 
how to adapt an algorithm



Contribution

Show how to obtain client driven web service adaptation

Some degree of freedom in automating algorithms 
adoption and adaptation for heterogeneous systems



Experiments & Tests

A software synthesis engine has been built

An Algorithm to compare syntax trees

Working on: method to abstract-concretize algorithm 
models



Limitations

Every different system/framework need the common Local 
Adaptation Engine to be partially modified

Only a reduced part of the systems can be modified

Evaluate the skills needed by users



Future work

Build better software synthesis engine

Extend to other systems/frameworks the capability to 
generate code (ex: EJB, Ruby on Rails)

Extend the used Ontology

Use a real case scenario for new tests



End

Thanks for your attention!




