ΤΓΓech

Self-Driving Cars: Challenging Reliable Distributed Systems

SRDS, Vienna, Sep/22, 2022 Wilfried Steiner

TTTech Computertechnik AG

ТГГесһ

Our vision

Advancing safe technologies, improving human lives

September 29, 2022

TTTech Group Key facts

Founded in **1998**, headquartered in Vienna, Austria, with **19** offices in **14** countries worldwide

Products in **1173** production programs

Connected companies: TTTech Auto, TTTech Industrial, TTControl, RT-RK 2,300 Employees/ subcontractors

60

Nations represented by our workforce

380 R&D/ENG/ADMIN

490 RT-RK Classic

1,170 TTTech Auto **50** TTTech Industrial

100 TTControl

90 TTTech Aerospace

Tllech

Market overview

ТГГесһ

• UAV / UAM

From fail-safe to fail-operational systems

Where do we stand? Hype Cycle on Autonomous Systems 2010-2021

ΤΓΓech

Safety is the grand challenge to introduce Level 4 Automated Driving

Perception and the "World Model"

Fail-Operational Safety Architecture

System Verification & Validation

Safety is the grand challenge to introduce Level 4 Automated Driving

Perception and the "World Model"

Fail-Operational Safety Architecture

System Verification & Validation

Automated Driving as Closed-Control Loop

T[[echAuto ACT **SENSE** THINK **Pre-Processing** Trajectory Actuator Sensors **Fusion Actuators Classification** Planning Control Cameras Power train Parking c Jam Lidars Braking Map Fu Longitudinal World iway Model Object F nouse Lateral (data structure, ırban Ultrasonics $((\bigcirc))$ Steering Road-G Vertical data, and rules) ((OO))Nano Radars Citv (Multi-Agent Planning) Radars Suspension Safety Architecture, safe computation (random HW faults, design faults @ SW & HW) Feasibility of Safety vs. How to safeguard complex (AI) algorithms? Fail-Operational Approach Complexity/Performance Requirements

The Automated Driving Challenge Heatmap

World Model as a Centerpiece for Assurance

ΤΓΓech

Safety is the grand challenge to introduce Level 4 Automated Driving

Perception and the "World Model"

Fail-Operational Safety Architecture

System Verification & Validation

Moving from Level 2 to Level 4 System

Conceptual Architecture for Safe Autonomous Systems

T[**[**ech

Kopetz, H. (2021). *An Architecture for Driving Automation*. URL: https://www.the-autonomous.com/news/an-architecture-for-driving-automation

Monitor – Example Trajectory Verification Procedures

6

MotionWise Safety Co-Pilot

One more detailed level of abstraction

Hybrid failure assumption *

- FTDSS FCUs are simple FCUs and ~ fail silently
- CCDSS, MSS, CEHSS are complex FCUs and fail arbitrarily

* Verissimo, P. et al. (2003). *Intrusion-tolerant architectures: Concepts and design*. In Architecting dependable systems (pp. 3-36). Springer, Berlin, Heidelberg.

Exhaustive Fault Simulation (Qualitative Study)

W. Steiner et al. (2004). *Model checking a fault-tolerant startup algorithm: From design exploration to exhaustive fault simulation*. Proc. of the International Conference on Dependable Systems and Networks. IEEE. pp. 189-198.

Formalization of Assumptions in PRISM (Quantitative Study)

TFFechAuto

Kopetz, H. (2021). *An Architecture for Driving Automation*. URL: https://www.the-autonomous.com/news/an-architecture-for-driving-automation

Safety is the grand challenge to introduce Level 4 Automated Driving

Perception and the "World Model"

Fail-Operational Safety Architecture

System Verification & Validation

System Verification and Validation

- "Classical" and more recent automotive standards
 - ISO 26262: Functional Safety
 - Automotive Safety Integrity Levels (ASIL)
 - ISO 21448: Safety Of The Intended Functionality (SOTIF)
 - ANSI/UL 4600: Standard for Safety for the Evaluation of Autonomous Products
 - Includes also anomaly detection, called "Safety Performance Indicators"
- Big Loop, e.g., <u>https://www.youtube.com/watch?v=2Acx6W5Totg</u>
- Street testing-only seems implausible
 - Kalra, N. & S.M. Paddock. (2016). Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?. Transportation Research Part A: Policy and Practice 94 (2016): 182-193.
- Composable V&V would be ideal: system V&V follows from independent subsystem V&V
 - How can common mode failures of the different subsystems be addressed?
 - Terrosi, F., L. Strigini, & A. Bondavalli. *Impact of machine learning on safety monitors.* In International Conference on Computer Safety, Reliability, and Security, pp. 129-143. Springer.

Conclusion

Conclusion

- Self-driving cars are the future of automotive mobility.
- Making them safe still is a challenge.
- Three safety challenges:
 - Perception and the "World Model"
 - Fail-Operational Safety Architecture
 - System Verification & Validation
- Three safety challenges are not independent.
 - How many world models are necessary?
 - Big loop validation has an impact on world model and the fail-operational safety architecture (which FCUs must connected to the cloud, which ones must be isolated?)

References:

- Kopetz, H. & W. Steiner. (2022). *Real-Time Systems: Design Principles for Distributed Embedded Applications*. 3rd Edition. Springer.
- Rushby, J. (2022). Models and their Validation and their Role in Perception and in Safe Autonomous Vehicles. IFIP WG10.4 Virtual Meeting. URL: <u>http://www.csl.sri.com/users/rushby/abstracts/ifip-11may22</u>
- Jah, S., J. Rushby, & N. Shankar. (2020). *Model-Centered Assurance for Autonomous Systems*. In International Conference on Computer Safety, Reliability, and Security, pp. 228-243. Springer.
- Kopetz, H. (2021). *An Architecture for Driving Automation*. URL: https://www.the-autonomous.com/news/an-architecture-for-driving-automation
- Miner, P.S., M. Malekpour & W. Torres (2002). A Conceptual Design for a Reliable Optical Bus (ROBUS). Proc. of the 21st Digital Avionics Systems Conference. IEEE press. (pp 13D3–13D3).
- Verissimo, P. et al. (2003). *Intrusion-tolerant architectures: Concepts and design*. In Architecting dependable systems (pp. 3-36). Springer, Berlin, Heidelberg.
- W. Steiner et al. (2004). *Model checking a fault-tolerant startup algorithm: From design exploration to exhaustive fault simulation*. Proc. of the International Conference on Dependable Systems and Networks. IEEE. pp. 189-198.
- Kalra, N. & S.M. Paddock. (2016). *Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?*. Transportation Research Part A: Policy and Practice 94 (2016): 182-193.
- Terrosi, F., L. Strigini, & A. Bondavalli. (2022). *Impact of machine learning on safety monitors*. In International Conference on Computer Safety, Reliability, and Security, pp. 129-143. Springer.
- SAL <u>https://sal.csl.sri.com/</u>
 PRISM <u>https://www.prismmodelchecker.org/</u>

Meet us outside at our booth! Contact us

VIENNA, AUSTRIA (HEADQUARTERS)

+43 1 585 34 34-0 office@tttech.com

USA

+1 978 933 7979 usa@tttech.com

JAPAN

+81 52 485 5898 office@tttech.jp

CHINA

+86 21 5015 2925-0 china@tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.

Tlech