Dependability Challenges in Safety-
Critical Systems: the adoption of
Machine Learning

Andrea Bondavalli,

RCL Group - University of Florence - Italy
e-mail: andrea.bondavalli@unifi.it

RCL

RESILIENT COMPUTING LAB




Outline

0 Introduction and motivation
a Safety and AI (and Machine Learning) artifacts

0 Understanding Safety Systems solutions based on
ML with associated challenges.

QO Move along two cases:
» ML as Controller coupled with a safety monitor
> ML as a safety monitor

= Discussion and Conclusion
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» It is a fact that AI solutions and Machine Learnin
algorithms are pervading all the areas and sectors o
our automated life.

» They show superior performance as they learn from
data and do not require the designer fo master at
start the complexity of any problem.

» They are Sa bit more slowly) pervading also safety
critical applications and systems......
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Safety Critical System: anY system whose failure méqh’r
have severely unacceptable = consequences regarding
human lives, environment or society

Difficulties in Al enabled critical applications

AI/ML used in safety-critical functions:
1 Lack of clear functional specifications
» Non-determumstic and probabilistic outputs
o Limutations of the tramming data
1 Non-explamnable ML (1.e.. black box)

1 Exhaustive testing 1s impossible (as wsual m ordinary SW) but m addition to that ML
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ML and safety assurance

» How to assure safety and security in
safety-critical applications making use
of ML?

» How to demonstrate that one can
trust on safety-critical applications
incorporating Machine Learning?

Can we do that for e.g., self-driving cars?
« Millions of vehicles
« Billions of driving hours
* Huge pressure to cut cost
« Very high criticality
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ML and safety standards
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Existing safety standards did not
evolve to cover ML technologies.
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ML and safety standards

Most standards define the SIL for a function not
for a component:

specifying the SIL or ALR for an ML algorithm is
not easy. It relies on the architecture of the
incorporating system

Safety cases needed to derive the safety

requirements at the ML algorithms level and to
support evidence of their proper behavior.
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Who is going to solve the problems?

Problems:

: How to assure safely
and security m Al
enabled  safety-cnitical
applications?

. How to demonstrate that
one can trust on Al
enabled  safety-cntical
applications?

Artificial intelligence

Robust Al models

Non-symbolic Al

* Larger lraining data sets and bigger and more
complex neural networks

+ Interpolation vs extrapolation
Explainable Al

Ensembles
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Today’s talk target

While waiting for the problem to be SOLVED
we have been focusing on understanding:

The properness and the risks of
Incorporating Machine Learning
Algorithms into
Safety-Critical Systems
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Safety Management and ML
Algorithms

Safety management: practices to

achieve or maintain safety through pemessseraraiusts

fail-aware,  failsafe, or  fail-§
operational mechanisms. |

To be used also in case of ML-based
component incorporated into SCS

To deal with faults resulting from
ML-based components:

» Safety envelope
» Runtime verification and fail-safe
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2 Different Scenarios

» The remainder of this talk will develop along
two different scenarios:

- ML performing the system function (taking
decisions) and a simple safety monitor to check
and take safety measures (e.g. stop the system)

- ML as a binary classifier performing the safety
monitor role (error/anomaly/intrusion detection)
and triggering safety measures

Andrea Bondavalli UNIFI-DiMal 2022
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G| Autonomous Vehicles

» Autonomous vehicles are one of the greatest examples
of the power of machine learning

» These systems are controlled by a neural network (or
an ensemble of neural networks), which we call
“Controller”, trained with huge amount of data to
perform the driving task

~_ Sensors CONTROLLER
Output (NN)

SENSORS

h 4

| —Action—> ACTUATORS

Environment
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» Given that we cannot trust these control systems
(“Controllers”, for brevity) to be safe enough, it is

natural to apply independent safety subsystems
(“Safety Monitors” or SM)

=
Al ALGORITHM =i
I

m B

SAFETY ENVELOPE

» |ldeally, a safety monitor is much simpler than
Controller, so that, once verified, it gives stron
confidence that it will perform to the level of reliabilit
(and hence of vehicle safety) assessed
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A Vehicle — System view

SAFETY Emergency
MONITOR Action
Sensors T
- SENSORS —
. Output Action
Environment |
CONISS)LLER —Action—> ACTUATORS

Controller: an end-to-end deep neural network,

Safety Monitor: performs safety checks based on t
sensors output and the action chosen by t
Controller. It will perform an emergency brake If t
Controller breaks the “safe braking distance” rule
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Controller: a neural network trained with the Deep
Deterministic Policy Gradient (DDPG) algorithm.

— The implementation is provided by the “Framework for
Reinforcement Learning Coach”, an open-source project developed
by Intel’s Al Lab

The Safety Monitor is in charge of detecting hazardous events

— |t receives LiDAR data and process them using «classic»
algorithms such as ground segmentation and clustering.
if the Controller breaks the "safe braking distance rule" the
monitor will perform an emergency brake
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Controller — Monitor interactions

» the state space of the System (Controller + Safety Monitor):

Safe States: all the states in which the Controller does not
need the intervention of the Safety Monitor, and the Monitor
does not intervene

B Mitigation States: the Controller’s behaviour would lead to a
system failure (accident), but the Monitor correctly prevents the

crash.

False Alert States: the states in which the Controller does not,
need the intervention of the Safety Monitor, but the Monitor
wrongly intervenes.

Accident States: all the states in which the Controller's
behavior leads to a crash which are not solved by the Monitor.
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Controller training

» Assume the Controller was trained for some time,
giving us this picture of the state space:

O Safe states

[ Accident
States

Andrea Bondavalli UNIFI-DiMal 2022
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O Safe states
B Mitigation States

O False alert States

O Accident States

To improve the overall system’s safety, it
would be natural to improve the Controller
by performing further training activity
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O Safe states

O False alert States
B Mitigation States
O Accident States

v
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.. Wich will be the actual evolution?

We can’t estimate in advance how the modifications (learning)
will change the Controller’s performance, but...

At the same time, the Safety Monitor is a “simpler” component,
designed to react to specific hazardous events and, in general, not
subject to changes

Assuming constant "coverage" in safety monitors while the
primary system evolves is a potentially dangerous fallacy.
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The Problem

The uncontrolled evolution of a machine-
learning component raises questions from
the point of view of safety assurance,
especially when paired with other
components such as the Safety Monitor
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Our experiment

The Controller can be trained until s
it meets the desired performance. S S—- Sas |

—

The Safety Monitor is a “simple” K&
submodule, (using classic techniques).
Its behaviour can change only if re-implemented.

The Controller is trained in without Safety Monitor. After th
whole system (Controller + Safety Monitor) is tested.

We used CARLA, an open-source urban driving simulator
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Controller Test Run

The Controller is first tested alone. A test run of the Controller ends

when:
- acollision happens or
- allthe target destinations are reached

We define the event C-crash (Controller crash) as

“a crash would occur without a SM”
number of C—crashes

From which we compute: — P(C-crash) = — _
kilometers driven

Safe states

Accident
R C L— SRDS22 20 Sept. 2022 24 States
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Testing the Safety Monitor

» The runs of the Controller are replayed, and the Safety

Monitor introduced

» Simulations run at a fixed time-step: we can thus
compute the time t necessary for the SM to prevent a
collision, if it happened in that specific run

» All the alerts of the SM before time t do not trigger the
emergency brake, but are recorded (as False Alarms)

» All the alerts of the SM after time t trigger th
emergency braking

R C L SRDS22 20 Sept. 2022 25

RESILIENT COMPUTING LAB

Andrea Bondavalli LquFI-DiMaI 2022



UNIVERSITA
9, DEGLI STUDI

SR
STING,
< 7 | FIRENZE eaS| I"es
2\ & S
“\NZ Ve DIMAI
/\\\\ \’\\ D‘\PﬁRHMEN‘TO DI i

MATEMATICA E INFORM,
ULISSE DINI

From the recorded counts of these basic events we
derived the metrics of interest:

number of Sls

— Coverage (COV)=

number of C—crashes

number of crashes

— P(crash) =

kilometers driven

number of FAs

— False Alarm Rate (FAR) =

number of FAs + number of TNs
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Results — Controller P(C-crash)

The Controller was tested at 5 different stages C1...Cs

Average P(C-Crash)

0,9
=08
(7))
© —
QO 07 —
&)
o 0,6

0,5

0,4

C1 C2 C3 C4 C5
Controller

Probability of the Controller alone causing a crash, i.e., P(C-crash)
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Safety Monitor Coverage

Coverage of the Safety Monitor when applied to the Controller at
different learning stages. We can see that its efficacy is at its

minimum when combined with the “best” Controller
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By comparing P(C-Crash) and P(Crash) we can see that adding
the Safety Monitor always reduce the likelihood of a crash

P(Crash) vs P(C-Crash)

0,9
0,8
EO,?
£ 06
O 0,5
004
0,3
0,2 —
0,1

C1 Cc2 C3 C4 C5
Controller

=o=System P(crash) =s=Controller P(C-Crash)

Most IMPORTANT: We can observe that, although C5 is
significantly better than the other Controllers, the System
performs better when using Controller C2
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Remarks

» |t is common practice in systems design to build and
analyse pieces in isolation and then enjoy some
‘composability’ when putting things together.

» If we used this approach as we did not change the
Safety Monitor, we might have expected to observe a
coverage between 70% and 75% of the Monitor

» As training provided good results: C5 P(C-Crash) is
quite lower than previous controllers, one would
expect the System to improve with the improvement
of the Controller!
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» BUT.... not only the COV(erage) of the Safety
Monitor drastically decreased when combined with
Controller C5

» but even the safety of the whole system got worse!

» we observed one example of the possibly dangerous
emergent phenomena that can raise by combining
Machine Learning and “static” software
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An architecture for binary predictions

A Binary classifier acting as the safety monitor - need to
have confidence in prediction to safely apply its decisions

We want to use an ML algorithm that either
i) provides predictions that are sufficiently safe to be used, or
iy triggers fail-control mechanisms.

Apply Function
due to Positive
Prediction

Safety Envelope Run-Time Verification and Fail-Control
Feature

Input
Data
Values
ML Algorithm
_ no
Predicted
Predicted = Positive?
Positive or R
yes

Apply Function
due to Negative

L.
[w]
2 g
E S % Prediction
. g &9
Negative o % 5
5 o
7y Trigger Fail
no rigger Fail-
Safety 2 g8
Analvsi Control
nalysis .
Y Mechanism
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Safety and misclassifications

Misclassifications may either be FNs (real problems
predicted as normal) or FPs (normal situations predicted
as problems).

» FNs are the primary and direct trigger to catastrophes
» FPs may indirectly lead to unsafe situations.

We assume here that only FNs are the cause of safety
issues.

Safety does not mean that critical events will never occur
In a system.

It guarantees that the risk (combination of likelihood and
impact) of a threat is tolerable according to the
requirements.
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Acceptable Level of Risk

(from standrds Standards)

a SMALL number of FNs,
FN* (Or' r'ZSidUCll FNs) HETEEFTAELE
may be admitted

Depending on the
Acceptable Levels of
Risk (ALR) derived from

the safety requirements
» ALR is a commonly used concept in safety

standards to specify the tolerable hazard.

normally defined as
« THR tolerable hazard rate or

10 per vear

ALARP REGION
[a% [owe &% reasonably
praclicable)

10 per year

Increasing individeal risk

ACCEPTABLE RISK

* PFD probability of failure on demand
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Properness of a ML algorithm

Our target becomes

To assess the properness a given ML
algorithm to be used as safety monitor.

Answering the following question:

Can it be safely used or does its usage
bring to an unacceptable risk?
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Measures
for assessing ML prediction algorithms

» The effectiveness of predictions are assessed depending on specific
indicators.

Given a data point and the judgement of an algorithm

4 outcomes which populate a confusion matrix used to derive metrics

RCL
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Do we have the proper metrics?

Normally Positive Negative

1) (True) NEGATIVES are much .

more than positives s P FP

2) Recall, Precision and their B

combination do not consider TN i

which is the most populated class. o . TH
g

Metrics based on the confusion matrix (i. e. based on
the number of misclassifications) may not adequa’relz
describe all the aspects of the behavior of an M
algorithm.

They may not be able to help us in answering to our
question.

R C L SRDS22 20 Sept. 2022 39

RESILIENT COMPUTING LAB

Andrea Bondavalli UNIFI-DiMal 2022



UNIVERSITA
3)

Structure of ML algorithms

MATEMA

Any ML algorithm gused as a binary classifier) devises a
mathematical model from a training data set. Once training is
completed it makes predictions through a function:

dp_label = alg.predict(dp)
alg.predict(dp): alg.decisionfunction(alg.score(dp))

alg.score(dp)

is a numeric score (depending on the type of algorithm)
alg.decisionfunction(num_score)

converts a humeric score into a binary label

- dp a single data point,
- dp_label the (binary) prediction for a data point
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B | Example. ML algorithm alg1

AAAAAAAAAAAAAAAAAAAAAA
\\\\\\\\\\

numeric scores in the

range of [1;15]
= Binary decision: 3 2
= negative if 7 < score < 9, 0 _——
positive otherwise. £
. test set of 76 data g : II
oints I I II
p ...
" RGSUHIS 65 TP 4 TN 4 FP E,E_ mEN(3) BTN
and 3 FN a.'. z : | L 5 B 7 f 4 10 ::H::I i3 FP_‘:] 15
- 90.7 Accuracy o
» and 94.9 F1-Score.
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Fredicted Positive Pradicted Pradictad Positive

range [1;15] t ol

Same binary decision  §° II

test set of 76 data points §
Result: 65 TP, 4 TN, 4 I ll
FP and 3 FN, ﬂ -

90.7 Accuracy E L
and 94.9 F1-Score. T

Coourrenoe

WEN(3) ETN(4)
uTF(E5) WEF([4)

fFPIFMN
[

i 11 ix 13 14 15

» SAME AS ALG 1
» BUT DIFFERENT DISTRIBUTION

Andrea Bondavalli UNIFI-DiMal 2022
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Difference between Alg1 and Alg 2

» same confusion matrix (the number of
misclassifications is the same).

» Misclassifications by alg2 only on scores in
the range [6. 7] while by ALG 1 in [4:8].

» This difference is not captured by the
confusion matrix and all the metrics based on
the number of TP, TN, FP, and FN.
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» analyze the distribution of

misclassifications [sse | [ negatve | [[sop positve |
» identify which numeric : Se

scores may generate
misclassifications,
(especially FNs)

> consider this subset of
scores as not sufficientl
safe

> ldentify an area containing _ 76 data gom‘rs 69 SSP«

not sufficiently safe
(NSSP) predictions, while iolig'g,% 3 SSP Negative, and®

the rest predictions are 72 predlc’rlons that are safe,

ence of TP/TN

]
I

EFN(3) OTN(4)
= TP (65) FP (4)

e -
9,:‘ 1 2 3 4 5 6 7 8 9 00 11 12 13 14 15

=]
1) Scores of the Binary Classifier

sufficiently safe (SSP) and 4 predictions that are not=
safe g
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» Not all FNs must be inside the NSSP

» there can be a residual small percentage,

labelled as FN*, which appear as SSP.

» How many FNs can be in the SSP?
» Determined according to the ALR:

probability of FN* within SSP < ALR.
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» how to separate SSP from NSSP?

» (and derive metric scores to quantitatively assess
safety of an ML algorithm).

Safety of predictions defined based on the

ALR
derived by the safety specialists.

» We developed algorithms that given an ALR
derive SSP,, , and NSSP,, , values
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Safety-Oriented Metrics

>The SSPALR and NSSP, . ouput by our

algorithms can then be used to compute:
» Sufficiently Safe Prediction rate

SSPr(ALR) =
rALR) = yeep—— 5P, -

» No Prediction rate - NPr(ALR):

NSSP
= NPT(ALR): 1 — SSPTALR: NSSPALR+A;§PALR
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AN ML-BASED INTRUSTION DETECTION SYSTEM FOR
CONTROLLER AREA NETWORK (CAN) BUS

Lm'.u.'.u:
I orwnnd Fueasll I
ol Ecom @ ® cEiTan
(ETIET]
|||-|.'-|||I.-:-:|:.'|i.
syntesn
Muarbag
eoniral ! r . i
i i - @r -.:I'II| I:-':I
| - o ]
: R =
= e - 1 : A

Toilas

A representation of the architecture of car with a CAN Bus

Successful Security attacks will impair safety!l
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.. Methodology and Experimental Setup

» Public datasets on attacks to build a solid
baseline for our experimental study.

» Unsupervised algorithms (have potential in
detecting both known and unknown - (zero day)

» Metrics: the two new metrics (with ALR set
to 0.01), and many from the literature.

» A framework to run experiments: the
RELOAD +tool.
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M Attacks and (Public) Datasets

Datasets used in this study: name, release year, data point
used, mumber of ordinal and categorical fe atures, number
and percentage of atf:au:k_..

f Data Features Attacks

Name YA Points o0 cw & 0
ADFANet 015 132002 5 6 3 1.3
CICIDS17 017 W0000 77 5 05 77
CICIDS18 018 0000 77 5 6 262

CIDDS 015 200000 5 27 04 144

150312 012 200000 4 010 4 455
NSLEDD 000 148516 37 5 24 407

SDIN20 2020 200000 63 5 05 666

UGR16 016 W0000 4 6 205 33

UNSWNBIS 2015 175341 38 6 8 65
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Unsupervised algorithms

MATEMATICA
ULISSE DINI

Clustering

K-Means HBOS Classification
¢ G-Means SOS One-Class SVM
: DBSCAN  : Isolation Forest
“{_IpcoF i=T\N_ 105 /7=~
¢/ LOF
\ ABOD
SDO | COF KNN FastABOD
» N Neural
- ODIN
s.___--__ _____..-f"Angle-based Network
Neighbour-based

We selected 12!
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Evaluation metrics

» SSPr(0.01) and NPr(0.01) - using an ALR 0.01

» Most common metrics: Accuracy (ACC), Precision (P),
Recall (R), False Positive Rate (FPR), F1-Score, Matthews
Coefficient (MCC), Area Under the ROC Curve (AUC),
Area under the Convex Hull of the ROC Curve (AUCH),

» Less used metrics: Gini index, H-measure (H), Kappa
Statistics (ng, Youden Index, and Precision-Recall-Gain
curve (PR-Gain

» ACC(0.01) and MCC(0.01), Accuracy and Matthews
Coefficient restricted to SSP(0.01): provide a measure
on the detection performance when providing
sufficiently safe predictions
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Binary classifiers })J

selection

L

(‘
Evaluation metrics
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binary classifier }
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TS5

architecture

.~ Feature i
~ extraction
-

|
|
, |
W |
~] Relevant +_ 4

features

ﬁ Model

Training)

Trained
Model )

Evaluation
results

™

Results for || Results for SSPr
: and NPr

12 algorithms on 9 datasets: 108 experiments
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The overall Evaluation

A portion of the results {metric scores) of applying the algorithms to the datasets, ordered by decreasing S5Fr. Highlishted cases
are those that are being e xplored through plots in this presentation

Case Traditional Metrics Distrbution-Based
pp Algorthm Dafaset \puo mpp p R FI F2 MCC ACC AUC AUCH H Gmi K5 Youden PR-Gain ﬁlr :ggf [ﬁf
1 FastABOD ADFANet| 001 0010 0.977099909850995 0985 0993 099 100 09 099 099 09 095 [l0000| 098 099
> LOF ADFANet| 000 0079 0551100009190966 0885 0945 097 097 085 09 09 000 055 [l0000| 089 095
3 SVM  ADFANet| 000 1000 0.310100004730.692 0002 0310 059 079 051 019 05 000 031 [l00.00] 000 031
15 LOF SON20 |00l 0900 0691099905170918 0262 0701 056 071 03 012 043 000 06 (0000 026 070
16 iFaest SDON20 |000 0232 0896100009450977 0829 0923 099 099 095 09 0% 05 09 (0000 08 o092
19 SOM  UNSW |001 1000037909990550075 0000 0379 056 065 009 013 020 002 038 |[0000| 000 038
0 SOM  SON20 | 013 0578 0.696099505200918 0251 0707 092 095 075 081 079 00 070 |98 029 071
2l  SVM  SDN20 |013 0894 0693099805170917 0261 0702 092 095 076 084 080 000 06 |[9982| 026 070
51 ODIN SDN20 |012 0395 0.835099009060955 0691 0882 060 074 03 021 045 011 083 |9%10| 065 056
% SDO CIDOS |020 0611 05100990674083% 0440 0625 056 071 019 012 0 03 051 |[9592| 040 060
3 SOM CIDOS |008 0755 0.445099806190801 0308 0521 058 072 020 016 043 000 045 |[9555| 021 048
3 SVM CIDOS |008 07S10449099806190801 0308 052 058 072 020 016 043 000 045 |[9553| 021 048
35 FastABOD SDN20 |009 0290 0.573099509300968 0778 0900 082 085 049 064 061 031 0§ |9518| 073 090
41 KMEANS UNSW |073 0765 0439098006070757 0290 0518 063 068 013 026 0M 000 044 |9174| 001 o044
£ GMEANS UNSW |124 0745 0443096906080783 0289 0526 052 062 011 004 022 000 044 [|9134] 010 045
6 LOF  UNSW | 658 0511 0354052705250672 0220 0651 057 064 005 014 018 016 045 |9032| 02 063 |
66 iForest ADFANst| 005 0597 0.713095405270915 0636 079 084 089 06 069 077 03 071 |[¢908| 000 071 |
77 ODIN CICIDS1S | 197 0075 0.972095009460951 0876 0.938 067 097 051 094 087 074 09 |[5L30| 000 093
7 ODIN  ISCX | 080 0468 0139057202400425 0219 059 069 077 004 037 045 000 013 |%003| 000 o014
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iForest on ADFANet - ID 66

MATEMATICA
ULISSE DINI

> Very few FNs, > very high Recall (99.2).... However,
many FNs co-locate with TNs ending in NSSP

> SSPr(0.01)=69.08% - only 69.08% sufficiently safe.

Predicted

o oo oo o ol o o o o o o o o o o o oo oo oooo :_::; :_::; :_::; :_::;
R ' ' ‘ iForest Scores
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FIRENZE
oo

MATEMATICA E INFORMATICA
ULISSE DINI

ODIN on CICIDS18 - ID 77

Example of very poor SSPr even with relatively low
FN% and high Recall

Only 1.97% FNs but scattered distribution.......

>  NPr=48.7% and SSPr = 51.3%

Predicted Positive (SSP Area) Predicted Negative (NP Area) TN Series = TP Series

[E
(%)

FP Series M FN Series
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i ODIN to ISCX - ID 78

DIPARTIMENTO DI
MATEMATICA E INFORMATICA
ULISSE DINI

Very low FN 0.8%, but SSPr 50.0% only!l.

The distribution of FNs (red bars) overlaps completely
with TNs (blue patterned bars), which all become NSSP.

Predicted Positive : . .
BTN Series = TP Series (SSP Area) Predicted Negative (NP Area)
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DIPARTIMENTO DI
MATEMATICA E INFORMATICA
ULISSE DINI

» High FN 6.58%.

LOF on UNSW - ID 43

» Here FNs are mostly in a relatively small area allowing for a
quite high SSPr of 90.32%.

Predicted
Negative
(SSP Area)

Predicted Positive
(SSP Area)

(NSSP Area)

I
Predicted Negative] Predicted Negative
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Traditional Metrics

» 43 cases out of our 108 had SSPr(0.01)

above 90%.~> (no more than 10% of the predictions are
NSSP)

» We derived the "best" 43 cases for each of
the traditional metrics.

- (Recall shares 36, all the others less than 20ll)

Number of cases that result in & 55Pr(0.01) 290 and fit in the best 43 for traditional metrics,

R F! Youden H  Fl PRGam AUC AUCH G P K5 MCC ACC FER
B B/ 16/ 1648 W /8 08 /8 W48 1048 Y8 68 o/ 483
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3 examples of low FN but scattered..

» It is evident that SSPr catches aspects of the behavior
of ML algorithms which escape traditional metrics!!

» Metrics based on distributions should be used together to
traditional ones:

Cases with perfect SSPr but many FPs.....
IDs 1 and 3: both achieve SSPr of 100,

but 1 shows an accuracy of 0.993
while 3 an accuracy of only 0.310 (and MCC = 0).

» 3 would be not usable because of availability
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Conclusions: Take from this journey

ML as Controller coupled with a safety monitor

 Nasty surprises - more learning improved the ML
controller but WORSENED the system

* Need for joint management and testing

ML as as a safety checker

* care with measures and proper derivation from safety
cases

« Selection of proper ML need deep analysis combining
traditional and ad hoc measures

ML can bring huge benefit to Safety critical
systems but integration needs a lot of attentionl!
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Credits to: Francesco Terrosi, Tommaso Zoppi, Mohammad
Gharib, Lorenzo Strigini, Andrea Ceccarelli and the entire
RCL-Group@UNIFI
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