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Outline

 Introduction and motivation
 Safety and AI (and Machine Learning) artifacts
 Understanding Safety Systems solutions based on

ML with associated challenges.
 Move along two cases:
ML as Controller coupled with a safety monitor
ML as a safety monitor 

 Discussion and Conclusion
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The advent of AI and ML
► It is a fact that AI solutions and Machine Learning

algorithms are pervading all the areas and sectors of
our automated life.

► They show superior performance as they learn from
data and do not require the designer to master at
start the complexity of any problem.

► They are (a bit more slowly) pervading also safety
critical applications and systems……
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Safety critical systems and AI

Safety Critical System: any system whose failure might
have severely unacceptable consequences regarding
human lives, environment or society
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ML and safety assurance

► How to assure safety and security in
safety-critical applications making use
of ML?

► How to demonstrate that one can
trust on safety-critical applications
incorporating Machine Learning?

Can we do that for e.g., self-driving cars?
• Millions of vehicles
• Billions of driving hours
• Huge pressure to cut cost
• Very high criticality
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ML and safety standards

Existing safety standards did not
evolve to cover ML technologies.
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ML and safety standards

Most standards define the SIL for a function not
for a component:

specifying the SIL or ALR for an ML algorithm is 
not easy. It relies on the architecture of the 
incorporating system  

Safety cases needed to derive the safety
requirements at the ML algorithms level and to
support evidence of their proper behavior.



SRDS22 20 Sept. 2022 8

An
dr

ea
 B

on
da

va
lli 

U
N

IF
I-D

iM
aI

20
22



SRDS22 20 Sept. 2022 9

An
dr

ea
 B

on
da

va
lli 

U
N

IF
I-D

iM
aI

20
22

Today’s talk target

The properness  and the risks of 
Incorporating Machine Learning 

Algorithms into 
Safety-Critical Systems

While waiting for the problem to be SOLVED
we have been focusing on understanding:
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Safety Management and  ML 
Algorithms

Safety management: practices to
achieve or maintain safety through
fail-aware, failsafe, or fail-
operational mechanisms.

To be used also in case of ML-based
component incorporated into SCS

To deal with faults resulting from
ML-based components:
► Safety envelope
► Runtime verification and fail-safe
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2 Different Scenarios

► The remainder of this talk will develop along
two different scenarios:

– ML performing the system function (taking
decisions) and a simple safety monitor to check 
and take safety measures (e.g. stop the system)

– ML as a binary classifier performing the safety
monitor role (error/anomaly/intrusion detection) 
and triggering safety measures



ML Performing the system function
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Autonomous Vehicles
► Autonomous vehicles are one of the greatest examples

of the power of machine learning

► These systems are controlled by a neural network (or
an ensemble of neural networks), which we call
“Controller”, trained with huge amount of data to
perform the driving task
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Safety Envelope
► Given that we cannot trust these control systems

(“Controllers”, for brevity) to be safe enough, it is
natural to apply independent safety subsystems
(“Safety Monitors” or SM)

► Ideally, a safety monitor is much simpler than a
Controller, so that, once verified, it gives strong
confidence that it will perform to the level of reliability
(and hence of vehicle safety) assessed
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A Vehicle – System view

Controller: an end-to-end deep neural network,
Safety Monitor: performs safety checks based on the
sensors output and the action chosen by the
Controller. It will perform an emergency brake If the
Controller breaks the “safe braking distance” rule
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An Experiment

Controller: a neural network trained with the Deep  
Deterministic Policy Gradient (DDPG) algorithm.

– The implementation is provided by the “Framework for
Reinforcement Learning Coach”, an open-source project developed
by Intel’s AI Lab

The Safety Monitor is in charge of detecting hazardous events
– It receives LiDAR data and process them using «classic» 

algorithms such as ground segmentation and clustering.
if the Controller breaks the "safe braking distance rule" the 
monitor will perform an emergency brake
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Controller – Monitor interactions
► the state space of the System (Controller + Safety Monitor):

Safe States: all the states in which the Controller does not
need the intervention of the Safety Monitor, and the Monitor
does not intervene

Mitigation States: the Controller’s behaviour would lead to a
system failure (accident), but the Monitor correctly prevents the
crash.

False Alert States: the states in which the Controller does not
need the intervention of the Safety Monitor, but the Monitor
wrongly intervenes.

Accident States: all the states in which the Controller’s
behavior leads to a crash which are not solved by the Monitor.
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Safe states

Accident 
States

Controller training

► Assume the Controller was trained for some time,
giving us this picture of the state space:
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Adding a Safety Monitor

Safe states

Mitigation States

False alert States

Accident States

To improve the overall system’s safety, it
would be natural to improve the Controller
by performing further training activity
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Further Training: Possible evolutions

Safe states
False alert States
Mitigation States
Accident States
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Wich will be the actual evolution?
We can’t estimate in advance how the modifications (learning)
will change the Controller’s performance, but…

At the same time, the Safety Monitor is a “simpler” component,
designed to react to specific hazardous events and, in general, not
subject to changes

Assuming constant "coverage" in safety monitors while the
primary system evolves is a potentially dangerous fallacy.
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The Problem

The uncontrolled evolution of a machine-
learning component raises questions from
the point of view of safety assurance,
especially when paired with other
components such as the Safety Monitor
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Our experiment
The Controller can be trained until
it meets the desired performance.

The Safety Monitor is a “simple”
submodule, (using classic techniques).

Its behaviour can change only if re-implemented.

The Controller is trained in without Safety Monitor. After the
whole system (Controller + Safety Monitor) is tested.

We used CARLA, an open-source urban driving simulator
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Controller Test Run
The Controller is first tested alone. A test run of the Controller ends
when:

• a collision happens or
• all the target destinations are reached

We define the event C-crash (Controller crash) as

“a crash would occur without a SM”

From which we compute: – P(C-crash) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Safe states
Accident 
States



SRDS22 20 Sept. 2022 25

An
dr

ea
 B

on
da

va
lli 

U
N

IF
I-D

iM
aI

20
22

Testing the Safety Monitor
► The runs of the Controller are replayed, and the Safety
Monitor introduced
► Simulations run at a fixed time-step: we can thus

compute the time t necessary for the SM to prevent a
collision, if it happened in that specific run

► All the alerts of the SM before time t do not trigger the
emergency brake, but are recorded (as False Alarms)

► All the alerts of the SM after time t trigger the
emergency braking
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Measures

From the recorded counts of these basic events we 
derived the metrics of interest:

– Coverage (COV) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

– P(crash) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

– False Alarm Rate (FAR) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇
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Probability of the Controller alone causing a crash, i.e., P(C-crash)

Results – Controller P(C-crash) 

The Controller was tested at 5 different stages 𝐶𝐶1…𝐶𝐶5
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C1 C2 C3 C4 C5

SM COVERAGE

Safety Monitor Coverage

Coverage of the Safety Monitor when applied to the Controller at
different learning stages. We can see that its efficacy is at its
minimum when combined with the “best” Controller
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Results - System
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Best system combination
By comparing P(C-Crash) and P(Crash) we can see that adding
the Safety Monitor always reduce the likelihood of a crash

Most IMPORTANT: We can observe that, although C5 is
significantly better than the other Controllers, the System
performs better when using Controller C2
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P(Crash) vs P(C-Crash)

System P(crash) Controller P(C-Crash)
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Remarks
► It is common practice in systems design to build and
analyse pieces in isolation and then enjoy some
‘composability’ when putting things together.

► If we used this approach as we did not change the
Safety Monitor, we might have expected to observe a
coverage between 70% and 75% of the Monitor

► As training provided good results: C5 P(C-Crash) is
quite lower than previous controllers, one would
expect the System to improve with the improvement
of the Controller!
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Lesson learnt

► BUT…. not only the COV(erage) of the Safety
Monitor drastically decreased when combined with
Controller C5

► but even the safety of the whole system got worse!

► we observed one example of the possibly dangerous
emergent phenomena that can raise by combining
Machine Learning and “static” software



ML as Safety checker
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An architecture for binary predictions

A Binary classifier acting as the safety monitor  need to 
have confidence in prediction to safely apply its decisions
We want to use an ML algorithm that either
i) provides predictions that are sufficiently safe to be used, or
ii) triggers fail-control mechanisms.
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Safety and misclassifications

Misclassifications may either be FNs (real problems 
predicted as normal) or FPs (normal situations predicted 
as problems).
► FNs are the primary and direct trigger to catastrophes
► FPs may indirectly lead to unsafe situations.

We assume here that only FNs are the cause of safety 
issues.

Safety does not mean that critical events will never occur 
in a system. 
It guarantees that the risk (combination of likelihood and 
impact) of a threat is tolerable according to the 
requirements. 
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Acceptable Level of Risk 
(from standrds Standards)

a SMALL number of FNs, 
FN* (or residual FNs) 
may be admitted 
Depending on the 
Acceptable Levels of 
Risk (ALR) derived from 
the safety requirements  

► ALR is a commonly used concept in safety 
standards to specify the tolerable hazard. 
normally defined as 

• THR tolerable hazard rate or
• PFD probability of failure on demand
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Properness of a ML algorithm

Our target becomes
To assess the properness a given ML
algorithm to be used as safety monitor.

Answering the following question:
Can it be safely used or does its usage
bring to an unacceptable risk?
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Measures
for assessing ML prediction algorithms

► The effectiveness of predictions are assessed depending on specific
indicators.

Given a data point and the judgement of an algorithm


4 outcomes which populate a confusion matrix used to derive metrics

Many metrics exist
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Do we have the proper metrics? 

Metrics based on the confusion matrix (i. e. based on
the number of misclassifications) may not adequately
describe all the aspects of the behavior of an ML
algorithm.

They may not be able to help us in answering to our
question.

Normally
1) (True) NEGATIVES are much
more than positives

2) Recall, Precision and their
combination do not consider TN
which is the most populated class. 
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Structure of ML algorithms
Any ML algorithm (used as a binary classifier) devises a
mathematical model from a training data set. Once training is
completed it makes predictions through a function:

dp_label = alg.predict(dp)

alg.predict(dp): alg.decisionfunction(alg.score(dp))

alg.score(dp) 
is a numeric score (depending on the type of algorithm)

alg.decisionfunction(num_score)
converts a numeric score into a binary label

– dp a single data point, 
– dp_label the (binary) prediction for a data point
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Example. ML algorithm alg1

 numeric scores in the 
range of [1;15] 

 Binary decision: 
 negative if 7 ≤ score ≤ 9, 

positive otherwise.  
 test set of 76 data 

points 
 Results: 65 TP, 4 TN, 4 FP 

and 3 FN,
 90.7 Accuracy
 and 94.9 F1-Score.
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ML algorithm alg2

► SAME AS ALG 1
► BUT DIFFERENT DISTRIBUTION

range [1;15] 
Same binary decision 
test set of 76 data points 
Result: 65 TP, 4 TN, 4 
FP and 3 FN, 
90.7 Accuracy
and 94.9 F1-Score.
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Difference between Alg1 and Alg 2

► same confusion matrix (the number of
misclassifications is the same).

► Misclassifications by alg2 only on scores in
the range [6; 7] while by ALG 1 in [4:8].

► This difference is not captured by the
confusion matrix and all the metrics based on
the number of TP, TN, FP, and FN.
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Scores of the Binary Classifier

FN (3) TN (4)

TP (65) FP (4)

SSP Positive SSP PositiveSSP NegativeNSSP

From Binary to Semi-Ternary 
Classification

 analyze the distribution of
misclassifications

 identify which numeric
scores may generate
misclassifications,
(especially FNs)

 consider this subset of
scores as not sufficiently
safe

 Identify an area containing
not sufficiently safe
(NSSP) predictions, while
the rest predictions are
sufficiently safe (SSP)

 76 data points: 69 SSP
Positive, 3 SSP Negative, and
4 NSSP.

 72 predictions that are safe,
and 4 predictions that are not
safe
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FN*

► Not all FNs must be inside the NSSP
► there can be a residual small percentage,

labelled as FN*, which appear as SSP.

► How many FNs can be in the SSP?
► Determined according to the ALR:

probability of FN* within SSP ≤ ALR.
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SSP and NSSP

► how to separate SSP from NSSP?
► (and derive metric scores to quantitatively assess

safety of an ML algorithm).

Safety of predictions defined based on the
ALR

derived by the safety specialists. 

► We developed algorithms that given an ALR
derive SSPALR and NSSPALR values
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Safety-Oriented Metrics

► The SSPALR and NSSPALR ouput by our
algorithms can then be used to compute:

► Sufficiently Safe Prediction rate

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴

𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴

► No Prediction rate – NPr(ALR):
► 𝑁𝑁𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 = 1 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴= 𝑁𝑁𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴

𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴+𝑆𝑆𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴
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EXAMPLE:

AN ML-BASED INTRUSION DETECTION SYSTEM FOR 
CONTROLLER AREA NETWORK (CAN) BUS

A representation of the architecture of car with a CAN Bus

Successful Security attacks will impair safety!!
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Methodology and Experimental Setup

► Public datasets on attacks to build a solid 
baseline for our experimental study. 

► Unsupervised algorithms (have potential in 
detecting both known and unknown – (zero day)

► Metrics: the two new metrics (with ALR set 
to 0.01), and many from the literature.

► A framework to run experiments: the 
RELOAD tool.



SRDS22 20 Sept. 2022 50

An
dr

ea
 B

on
da

va
lli 

U
N

IF
I-D

iM
aI

20
22

Attacks and (Public) Datasets
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Unsupervised algorithms

We selected 12!
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Evaluation metrics

► SSPr(0.01) and NPr(0.01) - using an ALR 0.01

► Most common metrics: Accuracy (ACC), Precision (P),
Recall (R), False Positive Rate (FPR), F1-Score, Matthews
Coefficient (MCC), Area Under the ROC Curve (AUC),
Area under the Convex Hull of the ROC Curve (AUCH),

► Less used metrics: Gini index, H-measure (H), Kappa
Statistics (KS), Youden Index, and Precision-Recall-Gain
curve (PR-Gain).

► ACC(0.01) and MCC(0.01), Accuracy and Matthews
Coefficient restricted to SSP(0.01): provide a measure
on the detection performance when providing
sufficiently safe predictions
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The overall methodology

12 algorithms on 9 datasets: 108 experiments



The overall Evaluation
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iForest on ADFANet - ID 66

 Very few FNs,  very high Recall (99.2)….. However,
many FNs co-locate with TNs ending in NSSP

 SSPr(0.01)=69.08%  only 69.08% sufficiently safe.
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ODIN on CICIDS18 - ID 77

Example of very poor SSPr even with relatively low 
FN% and high Recall
Only 1.97% FNs  but scattered distribution…….
 NPr = 48.7% and SSPr = 51.3%

-10

-5

0

5

10

15

0.
02

0.
05

0.
09

0.
13

0.
16

0.
20

0.
24

0.
27

0.
31

0.
35

0.
38

0.
42

0.
46

0.
49

0.
53

0.
57

0.
60

0.
64

0.
68

0.
71

0.
75

0.
78

0.
82

0.
86

0.
89

0.
93

0.
97

1.
00

1.
04

1.
08

1.
11

1.
15

1.
19

1.
22

1.
26

1.
30

1.
33

1.
37

1.
41

1.
44O

cc
ur

re
nc

es
 o

f F
P/

FN
   

   
  O

cc
ur

re
nc

e 
of

 T
P/

TN
 

(L
og

ar
itm

ic
 S

ca
le

)  
   

   
   

   
 (L

og
ar

itm
ic

 S
ca

le
)

ODIN Scores

TN Series TP Series

FP Series FN Series

Predicted Positive (SSP Area) Predicted Negative (NP Area)



SRDS22 20 Sept. 2022 57

An
dr

ea
 B

on
da

va
lli 

U
N

IF
I-D

iM
aI

20
22

ODIN to ISCX - ID 78 

Very low FN  0.8%, but SSPr 50.0% only!!. 

The distribution of FNs (red bars) overlaps completely 
with TNs (blue patterned bars), which all become NSSP.
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LOF on UNSW - ID 43

► High FN 6.58%.
► Here FNs are mostly in a relatively small area allowing for a

quite high SSPr of 90.32%.
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Traditional Metrics

► 43 cases out of our 108 had SSPr(0.01)
above 90%. (no more than 10% of the predictions are
NSSP)

► We derived the “best” 43 cases for each of
the traditional metrics.

– (Recall shares 36, all the others less than 20!!)
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Comments

3 examples of low FN but scattered..
1 with high FN but concentrated ……

► It is evident that SSPr catches aspects of the behavior
of ML algorithms which escape traditional metrics!!

► Metrics based on distributions should be used together to
traditional ones:

Cases with perfect SSPr but many FPs…..
IDs 1 and 3: both achieve SSPr of 100,

but 1 shows an accuracy of 0.993 
while 3 an accuracy of only 0.310 (and MCC = 0). 

► 3 would be not usable because of availability
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Conclusions: Take from this journey

ML as Controller coupled with a safety monitor
• Nasty surprises – more learning improved the ML 

controller but WORSENED the system
• Need for joint management and testing

ML as as a safety checker
• care with measures and proper derivation from safety 

cases
• Selection of proper ML need deep analysis combining 

traditional and ad hoc measures
ML can bring huge benefit to Safety critical
systems but integration needs a lot of attention!!
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QUESTIONS??

Credits to: Francesco Terrosi,Tommaso Zoppi, Mohammad 
Gharib, Lorenzo Strigini, Andrea Ceccarelli and the entire

RCL-Group@UNIFI
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